Note

An Improved Polynomial Representation for the Delta Function, $\delta\left(\mu-\mu_{0}\right)$

In numerical studies, it is often convenient to represent the delta function on the interval $[-1,1]$ as a series of Legendre polynomials. The usual representation is [1]

$$
\begin{equation*}
\delta_{N}\left(\mu, \mu_{0}\right)=\sum_{l=0}^{N}\left(\frac{2 l+1}{2}\right) P_{l}(\mu) P_{l}\left(\mu_{0}\right) \tag{1}
\end{equation*}
$$

which converges to a delta function on the interval $[-1,1]$ as N approaches infinity. However, there are several disadvantages to this representation. First, and most important, the convergence of $\delta_{N}\left(\mu, \mu_{0}\right)$ to $\delta\left(\mu-\mu_{0}\right)$ is very nonuniform in μ_{0}. Second, the functions δ_{N} are not positive definite, which can be a problem in certain situations.

We first discuss the rates of convergence of the family δ_{N} and then present what we feel to be an improved representation for $\delta\left(\mu-\mu_{0}\right)$ which is positive definite and yields more nearly uniform convergence.

The convergence of δ_{N}. To show how nonuniform the convergence of δ_{N} can be, we compute the ratios $\delta_{N}(1,1) / \delta_{N}(1,0)$ and $\delta_{N}(0,0) / \delta_{N}(1,0)$, both of which must converge to infinity as N approaches infinity. We employ Stirling's formula and find

$$
\begin{align*}
P_{i}(1) & =1 \\
P_{2 l}(0) & =(-1)^{l} \frac{(2 l)!}{2^{2 l}(l!)^{2}} \approx(-1)^{l}\left(\frac{1}{\pi l}\right)^{1 / 2}, \quad l \geqslant 1 \tag{2}
\end{align*}
$$

We now use Eq. (2) in the definition of δ_{N} to obtain the results

$$
\begin{align*}
\left|\delta_{N}(1,1)\right| & =\left|\sum_{l=0}^{N} \frac{2 l+1}{2}\right| \sim \frac{N^{2}}{2} \tag{3a}\\
\left|\delta_{N}(0,0)\right| & \cong\left|\sum_{l=0}^{\alpha-1} \frac{4 l+1}{2} P_{2 l}^{2}(0)\right|+\left|\sum_{l=\alpha}^{N / 21} \frac{4 l+1}{2} \frac{1}{\pi l}\right| \\
& \sim A+\left|\frac{2}{\pi} \sum_{l=\alpha}^{N / 2} 1\right|+\left|\frac{1}{2 \pi} \sum_{l=\alpha}^{N / 2} \frac{1}{l}\right| \sim \frac{N}{\pi} \tag{3b}
\end{align*}
$$

[^0]for $N \gg 2 \alpha, \alpha \geqslant 1$, where A is independent of N because α is determined by the condition that the error in Stirling's formula be small. Similarly we obtain
\[

$$
\begin{aligned}
\left|\delta_{N}(0,1)\right| & =\left|\delta_{N}(1,0)\right| \\
& \cong\left|\sum_{l=0}^{\alpha-1} \frac{4 l+1}{2} P_{2 l}(0) P_{2 l}(1)\right|+\left|\sum_{l=\alpha}^{N / 2} \frac{4 l+1}{2}(-1)^{l}\left(\frac{1}{\pi l}\right)^{1 / 2}\right| \\
& =A^{\prime}+\frac{1}{\pi^{1 / 2}}\left|\sum_{l=\alpha}^{N / 2}(-1)^{l}\left(2 l^{1 / 2}+\frac{1}{2 l^{1 / 2}}\right)\right|
\end{aligned}
$$
\]

Now we group the terms at $l=2 m$ and $l=2 m+1$ together with the result

$$
\begin{aligned}
\left|\delta_{N}(0,1)\right| \cong & A^{\prime}+\frac{1}{\pi^{1 / 2}} \left\lvert\, \sum_{m=\alpha / 2}^{N / 4}\left(2(2 m)^{1 / 2}+\frac{1}{2(2 m)^{1 / 2}}\right.\right. \\
& \left.-2(2 m+1)^{1 / 2}-\frac{1}{2(2 m+1)^{1 / 2}}\right) \mid \\
= & A^{\prime}+\frac{1}{\pi^{1 / 2}} \left\lvert\, \sum_{m=\alpha / 2}^{N / 4}\left(2(2 m)^{1 / 2}\left(1-\left(1+\frac{1}{2 m}\right)^{1 / 2}\right)\right.\right. \\
& \left.+\frac{1}{2(2 m)^{1 / 2}}\left(1-\left(1+\frac{1}{2 m}\right)^{-1 / 2}\right) \right\rvert\,
\end{aligned}
$$

or, using $m \gg 1$,

$$
\begin{equation*}
\cong A^{\prime}+\frac{1}{\pi^{1 / 2}}\left|\sum_{m=\alpha / 2}^{N / 4} \frac{-1}{(2 m)^{1 / 2}}+\frac{1}{2(2 m)^{3 / 2}}\right| \sim \frac{1}{\pi^{1 / 2}}\left(\frac{N}{2}\right)^{1 / 2} \tag{3c}
\end{equation*}
$$

again for $N \gg 2 \alpha, \alpha \gg 1$ with A^{\prime} independent of N. (In Eq. (3c), we have changed the sums into integrals to evaluate the estimates.) Therefore, our ratios are

$$
\begin{align*}
\left|\delta_{N}(1,1) / \delta_{N}(0,1)\right| \sim N^{3 / 2} \tag{4}\\
\left|\delta_{N}(0,0) / \delta_{N}(1,0)\right| \sim N^{1 / 2}
\end{align*}
$$

Thus we see that δ_{N} converges much more rapidly for $\mu_{0}=1$ than for $\mu_{0}=0$.
An improved representation. We start by listing several properties we would like an improved representation $\tilde{\delta}_{N}$ to have:
(i) $\tilde{\delta}_{N}\left(\mu, \mu_{0}\right) \rightarrow \delta\left(\mu-\mu_{0}\right)$ more nearly uniformly in μ_{0},
(ii) $\delta_{N}\left(\mu, \mu_{0}\right) \geqslant 0$,
(iii) The angular half-width of $\tilde{\delta}_{N}$ should be approximately independent of μ_{0}.
(iv) $\quad \tilde{\delta}_{N}$ must be expressible in terms of P_{0}, P_{N}.

Condition (iii) requires some explanation. In many physical problems the angular half-width of the source is the relevant parameter, not its width in μ; therefore, we adopt condition (iii).

To satisfy these conditions we attempt a representation of $\delta\left(\mu-\mu_{0}\right)$ in terms of Chebyshev polynomials [1], $T_{n}(\mu)=\cos n\left(\cos ^{-1} \mu\right)$. A brief calculation with geometric series results in

$$
\begin{align*}
F_{N} & =T_{0}(\mu)+2 \sum_{1}^{N-1} T_{n}\left(\mu_{0}\right) T_{n}(\mu)+T_{N}\left(\mu_{0}\right) T_{N}(\mu) \\
& =\frac{1}{2} \sin N\left(\theta+\theta_{0}\right) \cot \frac{\left(\theta+\theta_{0}\right)}{2}+\frac{1}{2} \sin N\left(\theta-\theta_{0}\right) \cot \frac{\left(\theta-\theta_{0}\right)}{2}, \tag{5}
\end{align*}
$$

$\theta=\cos ^{-1}(\mu), \theta_{0}=\cos ^{-1}\left(\mu_{0}\right)$, which does converge to $\delta\left(\mu-\mu_{0}\right)$ (to within a constant factor). Furthermore, it is easy to show that F_{N} converges approximately uniformly in μ_{0} and has approximately constant angular width. However, it is not positive definite and it only converges as N to $\delta\left(\mu-\mu_{0}\right)$.

We may eliminate both of these problems by averaging F_{N} over N and then subtracting off part of the result. We define

$$
\begin{align*}
C_{N} \tilde{\delta}_{N} & =\sum_{0}^{N-1} F_{n}+\frac{1}{2} T_{N}(\mu) T_{N}\left(\mu_{0}\right)-\frac{1}{2} T_{0}(\mu) T_{0}\left(\mu_{0}\right) \\
& =\sin ^{2} \frac{N\left(\theta+\theta_{0}\right)}{2} \cot ^{2} \frac{\left(\theta+\theta_{0}\right)}{2}+\sin ^{2} \frac{N\left(\theta-\theta_{0}\right)}{2} \cot ^{2} \frac{\left(\theta-\theta_{0}\right)}{2} \\
& =\left(N-\frac{1}{2}\right) T_{0}(\mu) T_{0}\left(\mu_{0}\right)+\sum_{n=1}^{N-1} 2(N-n) T_{n}(\mu) T_{n}\left(\mu_{0}\right)+\frac{1}{2} T_{N}(\mu) T_{N}\left(\mu_{0}\right) \tag{6}
\end{align*}
$$

Examining the center line of (6) it is easy to see that $\tilde{\delta}_{N}$ converges to $\delta\left(\mu-\mu_{0}\right)$ as N^{2}. In addition, it is clear that $\tilde{\delta}_{N}$ is positive definite.

If faster convergence is required, subsequent averages may be performed on $\tilde{\delta}_{N}$, i.e.,

$$
\begin{equation*}
C_{N}^{m} \tilde{\delta}_{N}^{m}=\sum_{n=0}^{N} \tilde{\delta}_{n}^{m-1} \tag{7}
\end{equation*}
$$

It can easily be seen that $\widetilde{\delta}_{N}^{m}$ converges to $\delta\left(\mu-\mu_{0}\right)$ as $N^{m+2} /(m+2)$!. In the Appendix we give a simple, fast, method for representing the T_{n} in terms of Legendre polynomials.

Summary. We have constructed an improved representation for $\delta\left(\mu-\mu_{0}\right)$ which is positive definite, has approximately uniform convergence, and has approximately constant angular width.

Appendix

Here we show how to represent T_{n} in terms of P_{l}. Consider

$$
\begin{equation*}
T_{n}(\mu)=\sum_{l=0}^{n} C_{n, l} P_{\cdot l}(\mu) \tag{Al}
\end{equation*}
$$

First note that odd n only couples with odd l and vice versa; therefore instead of needing a 40×40 array to store the $C_{n, r^{\prime}}$ only two arrays 20×20 are needed, halving the storage space required. Using the differential equations for T_{n}, P_{l} and the standard recursion relations, one obtains

$$
\begin{equation*}
\left(n^{2}-l^{2}\right) C_{n, l}+(2 l+1) \sum_{r=0}^{[(n-l-2) / 2]} C_{n, l+2+2 r}=0, \tag{A2}
\end{equation*}
$$

which determines all of the $C_{n, l}$ except $C_{n, n}$. These may be determined by matching the coefficients of the highest power of μ in P_{n} and T_{n}, yielding

$$
\begin{equation*}
C_{0,0}=1, \quad C_{1,1}=1, \quad \text { and } \quad C_{n, n}=2^{n-12^{n}} \frac{(n!)^{2}}{(2 n)!} . \tag{A3}
\end{equation*}
$$

Thus, all of the $C_{n, l}$ may be determined without calculating the coefficients of all the P_{l}, T_{n} or performing a large number of integrals.

Refrrence

1. W. W. Bell, "Special Functions for Scientists and Engineers," pp. 42-58, 187, 193, Van Nostrand, London, 1968.

Received: October 13, 1976; revised: May 17, 1977
D. A. Hitcheock
S. H. Brecht W. Horton, Jr.

[^0]: ${ }^{1}$ In Eqs. (3), fractional integers represent the appropriate integer parts of the fractions; i.e., $\alpha / \mathbf{2}$ is the greatest integer less than $\alpha / 2$.

